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Chapter

Reappraisal of Dietary 
Phytochemicals for Coronavirus 
Infection: Focus on Hesperidin 
and Quercetin
Paolo Bellavite

Abstract

Food polyphenols constitute a large family of substances with beneficial properties 
in a large group of communicable and non-communicable diseases. These compounds 
support and improve the body’s defences against oxidative stress and are helpful in 
the prevention of pathologies related to metabolic syndrome. Furthermore, they 
exhibit anti-inflammatory, antiviral, and antimicrobial properties. This chapter draws 
attention to certain nutritional components such as hesperidin and quercetin, which 
are emerging as good candidates for a complementary beneficial effect in the case of 
diseases caused by viruses, including COVID-19. These nutraceuticals have a complex 
mechanism of action, which involves both cellular defence against oxidative stress and 
the modulation of inflammation, which although normally is a defence, repair and 
activation mechanism of the immune system, it can elude its controls and become a 
systemic and destructive pathology (cytokine storm, respiratory distress syndrome). 
Furthermore, recent in silico simulation tests suggest that both hesperidin and quer-
cetin may interfere with SARS-CoV-2 by binding to cell receptors and the proteolytic 
enzymes involved in its replication. In addition to the inhibitory effects on the virus 
at cellular level, the two flavonoids can have indirect effects in respiratory infectious 
diseases as they prevent or improve metabolic and vascular comorbidities that can 
complicate the clinical course. This brief review focuses on biochemical and pharma-
cological mechanisms of action of polyphenols in the context of the revaluation of 
dietary approaches to the prevention and treatment of infectious diseases caused by 
viruses, with a special application to COVID-19.

Keywords: hesperidin, quercetin, citrus flavanones, functional food, nutraceuticals, 
respiratory virus, oxidative stress, SARS-CoV-2, COVID-19, metabolic syndrome, 
Nrf2

1. Introduction

In modern medicine and chiefly in the approach infectious diseases, nutrition 
seems to be a neglected or at least underestimated aspect, although it is recognised 
that it often plays an important role in the prevention of various diseases, including 
infectious ones [1, 2]. Flavonoids are abundant functional substances in plants with 
potential health benefits and are used as valuable food components or as supple-
ments. Some of these substances may have an antiviral action or in any case be 
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important in modulating the immune system and defending cells from the oxidative 
stress associated with infection.

Flavonoids are hydroxylated polyphenolic compounds based on the structure of 
the 15-carbon backbone of the parent flavone (2-phenyl-1,4-benzopyrone), which 
consists of two phenyl rings (A and B) and a heterocyclic ring (C) (Figure 1A). They 
can be divided into various classes based on their molecular structure and according 
to the C-ring replacements scheme: flavones, flavonols, isoflavones, anthocya-
nins, flavanols and flavanones. More than 4,000 varieties of flavonoids have been 
identified.

In the human diet, flavonols are widespread with quercetin standing out among 
them (Figure 1B). The most represented flavanone is hesperetin (Figure 1C) which 
is found in citrus fruits in glycosylated form as hesperidin (Figure 1D). Flavanones 
lack a double bond between C2 and C3 and this makes them chiral in the C2 posi-
tion. Chirality implies that the B ring is not planar like in flavonols and is twisted 
with respect to the A-C rings. Such a difference in molecular orientation is relevant 
because it can affect the way the different flavonoids interact with their biological 
targets and therefore their bioactive properties.

Quercetin [International Union of Pure and Applied Chemistry (IUPAC) name: 
2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxychromen-4-one, with a molecular weight 
of 302.23 g/Mol] contains five hydroxyl groups linked in position 3,5,7,3′ and 4′ to 
the basic flavonol skeleton. In plants and as a consequence of biotransformation by 
the intestinal bacterial flora, some of these hydroxyl groups are glycosylated and 
constitute the main derivatives of quercetin. Hesperidin (with a molecular weight 
610.6 g/Mol) is a glycosylated derivative of hesperetin [IUPAC name: (2S)-5,7-
dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-2,3-dihydrochromen-4-one, with a 
molecular weight of 302.28 g/Mol], with a 6-O-(alpha-L-rhamnopyranosyl) -beta-
D-glucopyranosyl disaccharide in position 7 via a glycosidic bond.

Figure 1. 
Molecular structure of flavone (A), quercetin (B), hesperetin (C) and hesperidin (D).
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The structure–activity studies show that the antioxidant and anti-free radical 
properties of flavonoids are due to the ketone group, the double bond between the 
2 and 3 carbons, the 3′, 4′-catechol and the 3-hydroxyl moiety in the flavonoid 
skeleton (the latter two are present in quercetin but not in hesperidin) [3]. The 
C2-C3 double bond extends the π conjugation to the carbonyl group in the C ring, so 
the radical elimination capacity of unsaturated flavonoids is greater than saturated 
structures, such as flavanones [4]. The antiradical capacity of flavonols in aqueous 
solvents is mainly exerted by the mechanism of electron transfer with sequential 
proton loss, associated with the C3 hydroxyl group, or of electron-proton transfer 
in the catechol component. Therefore, the type of substitution of the B ring is also 
considered as a determinant of the antiradical potency of flavonoids [4].

Many of the biological effects of flavonoids appear to be related to their ability 
to modulate receptors, enzymes, cell signalling cascades, rather than to a direct 
antioxidant effect. In fact, the maximum concentrations of flavonoids that can be 
reached in the blood with very high intakes (~ 2 μmol/L) are much lower than the 
concentrations of other antioxidants, such as ascorbic acid (~50 μmol/L) uric acid 
(200–400 μmol/L) and glutathione (700–1500 μmol/L). The functional interaction 
between flavonoids and enzymes or receptors occurs through hydrogen bonds and 
hydrophobic interactions with key amino acids of targeted proteins. For example, 
an inhibition of the activity of the enzyme xanthine oxidase by quercetin is exerted 
thanks to hydroxyl groups of C5 and C4 [5], and the anti-inflammatory activity 
depends not only on the number of free hydroxyl groups, but also on the methyl 
group [6]. Here the binding capacity of quercetin and hesperidin to some important 
proteins of the SARS-CoV-2 virus will be described in more detail.

In fresh orange juice the hesperidin content represents about 30 mg per 100 ml 
[7], but it is found in greater quantities in the white part of the peel [8]. Quercetin 
is widely present in the plant kingdom [9, 10] with an average daily consumption of 
25–50 milligrams [11], up to about 250 mg per day in “high-consumers” of fruit and 
vegetables [12].

Both hesperidin and quercetin have long been known for their antioxidant, anti-
inflammatory and anti-lipemic properties. This review will focus on their effects 
in viral infections, with special prominence on the recently exploded COVID-19 
pandemic and its SARS-CoV-2 responsible virus. With the outbreak of COVID-19 
and the scientific world’s focus on the search for preventive, antiviral and immu-
nomodulatory substances, other particularly interesting characteristics of dietary 
phytochemicals have emerged. Many studies have highlighted the importance of 
the intracellular redox state as a new target for natural or synthetic drugs aimed at 
blocking both viral replication and excess inflammation [13, 14]. It has therefore 
been suggested that early flavonoid treatment may be a way to restore redox bal-
ance, prevent cell damage and the resulting inflammatory storm that causes lung 
damage with respiratory dysfunction [15–18].

Although there is still no clinical evidence of efficacy for COVID-19, the two 
flavonoids are emerging as some of the most capable substances of specifically 
inhibiting binding to cellular receptors of the SARS-CoV-2 virus and its replication 
[8, 14, 19–21]. A recent randomised study, which appeared in as a preprint version, 
suggests that quercetin, administered together with vitamin C, could help health 
care workers in the prevention of SARS-CoV-2 infection [22].

Here we will examine the known mechanisms of action of hesperidin and 
quercetin, taking SARS-CoV-2 as a paradigm, and without neglecting to mention 
the important properties of these natural substances for health care in general. 
Following a logical order, the various passages of the disease will be dealt with 
starting from cellular infection to clinical consequences, specifying the points 
where these flavonoids could act.
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2. Effects at cellular level

Tests on laboratory animals have shown the ability of flavonoids to inhibit 
infection by various viruses such as herpes simplex-1, parainfluenza and respiratory 
syncytial virus [23, 24], poliomyelitis-1 [25], rhinovirus [26, 27], hepatitis C [28], 
rotavirus [29], influenza [30–36], SARS-coronavirus-1 [37]. Here we will examine 
recent evidence regarding the SARS-CoV-2 virus in more detail.

Coronaviruses are a group of single-stranded RNA viruses with a corona-like 
morphology, mainly causing enteric and respiratory diseases of varying extents. 
Once the first mucosal barriers and possible intervention of the immune system 
have been overcome, the viruses enter the cell via specific receptors, the nucleic acid 
is then expressed causing various intracellular changes, including replication into 
multiple copies and various types of damage to the host cell. In each of these steps 
it is possible to imagine the action of compounds that tend to block entry or slow 
down replication and its pathological consequences (Figure 2).

2.1 Receptor binding and entry

The internalisation of SARS-CoV-2 in human cells is mediated by the binding 
of the virus’ spike glycoprotein (S) to its receptor on cell membranes, which is the 
angiotensin converting enzyme 2 (ACE2) [38, 39]. ACE2 is expressed in many tis-
sues including the lung, liver, heart, colon, oesophagus, intestine, kidney, and even 
the brain, which is consistent with the variety of cell types that can be infected, 
and the variety of symptoms reported in COVID-19 patients [40–45]. The S protein 
has two subunits, the first of which contains a receptor binding domain (RBD), 
which is responsible for binding to ACE2. Binding and entry are also favoured by 
the presence of a polybasic cleavage site between the two subunits of the spike and 
by proteolytic enzymes attached to the receptor, of which trans membrane serine 
protease-2 (TMPRSS2) is particularly important.

The discovery that the hesperidin molecule has a chemical–physical struc-
ture suitable for binding to the spike of the SARS-CoV-2 virus (* 1 in Figure 2) 
has recently aroused scientific interest [14, 46–51]. Wu et al. [46] used in silico 

Figure 2. 
Intracellular cycle of the SARS-CoV-2 virus. Green asterisks and numbers indicate the points of the flavonoid 
actions described in the text.
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simulation techniques to screen 1066 natural substances with a potential antiviral 
effect, plus 78 antiviral drugs already known in the literature. Of all of them, 
hesperidin was the most suitable for binding to the SARS-CoV-2 spike, wedging 
into the shallow middle sulcus of the RBD, where some hydrophobic amino acids, 
including Tyr436, Try440, Leu442, Phe443, Phe476, Try475, Try481 and Tyr49 
form a hydrophobic pocket to contain the compound.

Various authors have confirmed the affinity of hesperidin for the RBD frag-
ment of the spike protein and its ability to hinder the binding with ACE2 or to 
make the interaction unstable (Figure 3) [52, 53]. The anchoring of hesperidin is 
stabilised by two hydrogen bonds (shown with green lines in Figure 3) with the 
amino acids Phe457 and Glu455 on the spike protein. According to other in silico 
screening studies, hesperidin also has an affinity for TMPRSS2 protease, which is 
involved in the functioning of the receptor when the vesicle is internalised with 
the virus [54, 55].

Molecular dynamics simulations and energy landscape studies revealed that 
other flavonoids such as fisetin, quercetin and kaempferol bind to the ACE2-spike 
complex with favourable free energy [56]. Another group reported studies show-
ing that quercetin has a high affinity for viral spikes, blocking the sites of interac-
tion with cellular receptors [19]. According to other authors who followed a gene 
expression approach [57], quercetin is identifiable as one of the highest scoring 
natural substances, altering the expression of numerous human genes that encode 
SARS-CoV-2 protein targets, including ACE2.

2.2 Proteolysis and assembly

A second theoretical site of flavonoid action is the main protease that allows 
the processing of the first proteins transferred from the viral genome (point *2 in 
Figure 1).

After interacting with membrane receptors and their associated proteases, the 
viral particle is internalised by means of a vesicle formed by the same membrane, 
the shell of which is then removed, allowing the release of the genomic RNA into 
the cytoplasm. The coding sequences of the genomic RNA are translated into pp1a 

Figure 3. 
Binding of the ACE2 protein with the spike in the presence of hesperidin. The RBD fragment of the spike 
protein (331–524) is shown in red, and the hesperidin molecule in the stick model and human ACE2 is shown 
in blue. Figure created using a diagram component from the cited work [52] with authorisation from Creative 
Commons.
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and pp1ab proteins, which are then broken down by a proteolytic process for a total 
of 16 non-structural proteins. The main enzyme that carries out this transformation 
is called 3-chymotrypsin-like protease (3Clpro) or major protease (Mpro) by vari-
ous authors and is in fact the target of many chemical antiviral drugs.

Some non-structural proteins then form a replication complex that uses genomic 
(+) RNA as a template. Eventually, the subgenomic RNAs produced through tran-
scription are translated into structural proteins that will form new viral particles. 
For this purpose, structural proteins are incorporated into the membrane and the 
nucleocapsid N protein combines with the RNA produced through the replication 
process to become a nucleoprotein complex. The various components fuse into 
the complete viral particle in the Golgi endoplasmic reticulum apparatus, which is 
finally excreted in the extracellular region.

A strong affinity of hesperidin to Mpro has been discovered by various authors 
[46, 47, 50] in the screening of thousands of potential molecules using molecular 
docking techniques. Hesperidin binds with hydrogen bonds to various amino acids, 
mainly Thr24, Thr25, Thr45, His4, Ser46, Cys145 [50]. An important precedent 
exists when the authors investigated natural compounds capable of inhibiting 
Mpro of the SARS virus [37], using cell-based proteolytic cleavage assays. Out of 
seven phenolic compounds tested, hesperetin inhibited proteolytic activity effi-
ciently with an IC50 of 8.3 μmol/L. Since the coronavirus main protease structure 
and active site conformation are preserved despite sequence variations [51], it is 
conceivable that the inhibitory effect of hesperidin, previously observed in the 
SARS virus, could also be exploited in SARS-CoV-2. Furthermore, hesperidin binds 
to structural protein 16 (nsp16) of the coronavirus, which is a methyltransferase 
dependent on S-adenosyl methionine [58]. This protein plays an important role in 
viral replication and prevents recognition by the innate immune system.

Quercetin has also been shown to inhibit the Mpro of the SARS-CoV [59], 
MERS-CoV [60] and SARS-CoV-2 [61] coronaviruses. The binding points of 
quercetin and hesperetin on SARS-CoV-2 Mpro are partially different [19]: the first 
in fact binds to Glu288, Asp289 and Glu290, while the second to Glu290, Asp289, 
Lys5. Furthermore, hesperetin, naringenin and kaempferol bind to the regulatory 
site Leu286, which quercetin does not do. All this suggests that the different mol-
ecules do not overlap as a pharmacological activity on the Mpro, but can synergise.

An even more recent study [62] confirms the affinity of quercetin to Mpro 
using the measurement of the enzymatic activity. Evidence of its inhibitory effect 
was obtained with a fairly low dose of quercetin (7.7 μmol/L). Figure 4 shows the 
molecular complex formed by quercetin bound in the cavity that constitutes the 
active site of Mpro (in blue), in the most favourable position to inhibit the protein 
enzymatic activity in order to block the replication of the coronavirus.

Da Silva et al. [63] have expanded the search for molecules interacting with 
Mpro to a series of flavonoid glycosides using a molecular docking approach. The 
interactions and binding affinity with the protease by quercetin and even more by 
its glycosidic derivatives quercetin-3-O-rutinoside (rutin), quercetin-3-O-glucuro-
nide, quercetin-3′- O-sulphate, quercetin-7-O-glucuronide, quercetin-7-O-sulfate 
were thus predicted. It should be noted that the absorbed flavonoids normally 
undergo extensive metabolism in the epithelial cells of the small intestine and in 
the liver. Metabolites conjugated with the methyl, glucuronate and sulphate groups 
are the predominant forms present in plasma [64–66]. Quercetin has also been 
indicated as one of the substances capable of binding and thus inhibiting RNA-
dependent RNA polymerase, an essential enzyme in the replication of viral RNA in 
the host cell [63].

Russo et al. [20] further confirmed the ability of known flavonoids (e.g. quer-
cetin, baicalin, luteolin, hesperetin, gallocatechin gallate, epigallocatechin gallate) 
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to inhibit the key proteins involved in the infectious cycle of SARS-CoV-2. They 
suggested that flavonoids and their derivatives, due to their pleiotropic activities 
and lack of systemic toxicity, may represent target compounds to be tested in future 
clinical trials to enrich the arsenal of drugs against coronavirus infections.

2.3 Oxidative stress

Oxidative stress is an important cell pathology mechanism which is involved in 
many diseases, including those caused by viruses. Viral respiratory infections are 
generally associated with the production of cytokines, inflammation, cell death and 
other pathophysiological processes, which could be linked to increased production 
of reactive oxygen species (ROS), redox imbalance and oxidative stress.

Many lines of evidence suggest that viral infections are accompanied by signs 
of increased production of ROS, presence of oxidation products in blood plasma 
and urine, and reduced antioxidant capacity [67]. This pathological and patho-
genic phenomenon has been observed in the infection of viruses such as hepatitis 
B [68], hepatitis C [69], influenza [70] and SARS-CoV-2 [71]. In the latter, ROS 
could also determine an unfavourable evolution in elderly subjects with low 
antioxidant capacity [72, 73], perhaps because the intracellular redox environ-
ment alters the presentation of antigens [74] and the expression of ACE2 [75, 76]. 
In fact, the severity and mortality risk of SARS-CoV-2 or COVID-19 have been 
associated with age [73].

Studies have shown that the ability of viral envelope glycoproteins to fuse to 
the surface of a cell membrane depends on the disulphide-thiol balance of the cell, 
even if the binding of coronaviruses to cell receptors seems rather insensitive to 
these parameters [77]. It seems possible that the oxidation of thiols to disulphides, 
under an oxidative stress mechanism, increases the affinity of spike proteins for 
the ACE2 receptor and, therefore, increases the severity of COVID-19 [75]. In 
this regard, reduced glutathione (GSH) may also have direct anti-SARS-CoV-2 
potential: in fact, a computational study indicates that the binding of the spike 
protein to ACE2 is at its highest when the ACE2-sulfur groups are in the form 
of disulphides and are altered when they are fully reduced to thiols: therefore a 
pro-oxidant environment with low levels of GSH would favour the cellular entry 
of viruses [75, 78].

Figure 4. 
Representation of the quercetin molecule (in orange) within the active site of the Mpro of the SARS-CoV-2 
virus. Developed by Bruno Rizzuti on the basis of the study of which he is co-author [62]. Reproduction 
authorised by the author.
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In the course of viral diseases, analgesic and antipyretic drugs are widely used, 
and of these one of the most common is paracetamol (acetaminophen). However, 
the fact that this drug depletes glutathione reserves and can worsen oxidative stress 
is not always taken into account [78, 79]. This type of biochemical modifications 
can decrease the antiviral defences [80] or complicate the course especially in 
patients with abnormal liver tests or liver failure [81, 82].

As described in the Introduction, flavonoids have a molecular structure capable 
of participating in redox reactions and free radical scavenging, which are involved 
in the biochemical phenomena described here and in the cellular pathology result-
ing from viral infection (point * 3 in Figure 2). Hesperidin contributes signifi-
cantly to antioxidant defence systems and has been reported to act as an effective 
agent against superoxide and hydroxyl radicals [83], while hesperetin inhibits 
the production of nitric oxide by lipopolysaccharide (LPS)-stimulated microglial 
cells [84].

Quercetin also acts as a free radical scavenger, donating two electrons to oxidised 
species which are reduced. When this occurs with the transfer of one electron at a 
time, a semiquinonic intermediate molecule is formed. This antioxidant activity of 
quercetin is exploited in synergy with vitamin C, thanks to the ability of ascorbate 
to recycle the flavonol molecule, protecting it from oxidation and recycling its oxi-
dised quinonic form after the scavenger action on free radicals [85]. In addition to 
ascorbic acid, glutathione is also important for maintaining quercetin in its reduced 
and therefore functional form and preventing the risk that quercetin quinone, in 
turn, may oxidise the thiol groups of proteins [86, 87].

Figure 5. 
Oxidative stress induced by several pathogenic factors (top part) and cellular defensive effects of flavonoids, 
functioning as direct free radicals scavengers in synergy with ascorbate and other liposoluble vitamins (A, E) 
and as stimulants of the Nrf2/ARE pathway. O2-: Superoxide anion; H2O2: hydrogen peroxide; °OH: hydroxyl 
radical; LO2H: Lipid hydroperoxide; LPS: lipopolysaccharide; Keap1: Kelch-like ECH-associated protein 
1; Nrf2: nuclear factor erythroid 2–related factor 2; Maf: musculoaponeurotic fibrosarcoma element; ARE: 
antioxidant response element.
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Various in vitro and in vivo studies have shown that the antioxidant activity 
of hesperidin and quercetin is not limited to their scavenger activity, but actually 
increases cellular defences against oxidative stress through the signalling path 
Nrf2/ARE [88–95] (Figure 5).

The nuclear factor erythroid 2–related factor 2 (Nrf2) is of primary importance 
because it regulates gene expression through a promoter sequence known as the 
antioxidant response element (ARE). Normally Nrf2 is attached to another protein 
called Kelch-like ECH-associated protein 1 (Keap1) and is rapidly degraded through 
the ubiquitination and proteasome system, without performing any functions. On 
the other hand, in the presence of ROS, Nrf2 detaches from Keap1, is phosphory-
lated and translocates to the nucleus, where it combines with a small musculoapo-
neurotic fibrosarcoma (Maf) protein to form a dimer and binds to the antioxidant 
response element upstream of the promoter. This ARE + Nrf2 dimer then initiates 
the messenger RNA transcription of a series of target genes such as those encoding 
antioxidant enzymes (“Antioxidant systems” in Figure 5).

The ability of hesperidin to fight damage from toxic oxygen radicals and 
stimulate the expression of Nrf2 has been reported by various authors in other 
experimental models namely in hepatocarcinogenesis [96], hepatotoxicity [97], 
neuroinflammation and neurodegeneration [91, 98–102]. The protective effects 
of quercetin in neurodegenerative disorders and cerebrovascular diseases, dem-
onstrated both in in vitro and in vivo studies are also largely linked to its ability to 
stimulate the defences against oxidative stress [103].

3. Organ failure and systemic pathology

Once they have reproduced in the cells of the entry tissues and overcome the 
first barriers of innate defences, the viruses spread to target organs and cause 
various types of clinical consequences in different individuals. It is known that 
the severity of COVID-19 as well as other viral respiratory infections is related to 
many different parameters (age, gender, nutritional status, comorbidities, etc.) and 
that people with pre-existing conditions such as diabetes, hypertension, and lung, 
heart and kidney diseases (all diseases in which ROS play a pathogenetic role) are 
at increased risk of developing severe effects. In serious cases, endothelial dysfunc-
tion, coagulopathy and pulmonary thrombosis cause hypoxia, mitochondrial chain 
abnormalities, mitochondrial dysfunction, oxidative stress, DNA damage [104, 
105]. Another mechanism that links systemic inflammation syndrome and oxidative 
stress is hyperferritinemia, which often characterises COVID-19 [106, 107].

These mechanisms are involved in the extensive systemic lesions observed 
during severe complications associated with influenza. It has therefore been 
suggested that agents with antioxidant properties could be drugs of choice for 
the treatment of patients with such severe complications [108]. N-acetylcysteine, 
which supports glutathione and thus the main antioxidant defence systems [109], 
was used with good results in influenza syndromes [110] and acute respiratory 
distress syndrome (ARDS) [111], and it was suggested as a potential therapeutic 
agent for COVID-19 [112–114].

Figure 6 summarises the main critical points of the SARS-CoV-2 virus in the 
whole body and the possible interventions of the two flavonoids considered here, 
based on the knowledge acquired so far in other types of systemic and metabolic 
disorders.

Experimental evidence showed that treatment with hesperidin safeguards the 
aged rat’s heart by increasing the levels of the Nrf2 factor and the activity of enzy-
matic antioxidants [115]. The same group showed a protective effect of hesperetin 
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on experimental heart failure in the rat [116]. The authors conclude that it is con-
ceivable that hesperetin could be a potential therapeutic candidate that enhances 
Nrf2 signalling and thereby improves cardiac remodelling. Results from another 
study show the beneficial effects of citrus flavanones in the liver of aged rats, where 
nirangerin and hesperidin prevented the age-related decrease in catalase, superox-
ide dismutase and glutathione reductase [117].

The mechanism of ischemia–reperfusion liver injury was studied in a murine 
model by measuring oxidative stress indicators, serum enzymes and inflamma-
tion indices [118]. Hesperidin (100–400 mg/kg) significantly improved liver 
ischemia–reperfusion injury measured by serum alanine aminotransferase levels, 
reduced malondialdehyde content, but it increased superoxide dismutase, catalase, 
glutathione peroxidase levels. Furthermore, hesperidin significantly alleviated the 
expression levels of TNF-α, IL 6 and IL-1β. Hesperidin (100 mg/kg) protects rats 
from liver damage and dyslipidaemia caused by cadmium chloride [119].

The antioxidant effect of quercetin was studied in a two-week, randomised, 
crossover-controlled intervention trial [120]. Fourteen individuals ingested 2 
capsules (total 1 g/d) of quercetin or a placebo. Blood samples were collected 
before, after 2 weeks of supplementation and after a period of strenuous exercise. 
Quercetin significantly reduced erythrocyte lipid peroxidation levels and suscep-
tibility to haemolysis induced by free radicals, while no differences were found in 
antioxidant enzyme activities and glutathione homeostasis between the two groups. 
After a single period of intense exercise, quercetin supplementation improved redox 
status as assessed by the reduced glutathione/oxidised glutathione ratio and by 
thiobarbituric acid reactive substances levels in both erythrocytes and plasma.

3.1 Excess inflammation

During the spread of the virus in the tissues (first of all in the lung) and systemi-
cally (lymph, blood, immune system, coagulation, kidney, liver), an inflamma-
tory reaction develops which can be clinically very serious, especially in patients 

Figure 6. 
Diagram of the major systemic effects of COVID-19. The asterisks show the possible operation points of the 
flavonoids, as discussed in chapter 2 (*1, *2, *3) and in this chapter (*3, *4 and *5).
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with comorbidities. Excessive and “vicious” inflammation can be mediated by a 
distorted activation of the cytokine network, by coagulation disorders, even by a 
paradoxical excess of the immune reaction (autoimmunity, cytotoxic lymphocytes) 
[121]. Oxidative stress and excess inflammation are linked, as shown in Figure 6 
(points *3 e *4). Autoimmune phenomena are also likely to be involved in the attack 
on the cell infected with SARS-CoV-2, which could have implications both in the 
clinical course of the disease [122, 123] and in the safety of vaccines [124].

The two flavonoids which are reviewed here have a remarkable ability to modu-
late local and systemic inflammatory responses, through various mechanisms. 
Hesperidin showed antioxidant activity in rats after an intense training programme 
and, at the same time, alleviated cytokine secretion by stimulated macrophages 
[125, 126]. Furthermore, the administration of hesperetin has been shown to sig-
nificantly reduce the levels of myeloperoxidase, malondialdehyde (a marker of lipid 
peroxidation) and inflammation in experimental models of colitis [127] and hepatic 
trauma [128]. A study on macrophage cells in culture induced by bacterial endo-
toxin (LPS) clearly highlighted the main molecular effects of hesperetin capable of 
modulating inflammation [129].

One of the most frequently used experimental models is LPS-induced pneumo-
nia in mice, which somewhat mimics ARDS. Three separate studies have shown that 
hesperidin (in doses between 10 and 200 mg/kg) significantly reduces the accumu-
lation of fluid in the lung and proinflammatory cytokines [130–132]. The protective 
and anti-inflammatory effect of hesperidin or hesperetin was also demonstrated in 
rats with acute lung injury induced by mechanical ventilation [133] and lung infec-
tion with the H1N1 influenza virus [36]. Finally, hesperidin has anti-inflammatory 
and antioxidant effects in chronic obstructive pulmonary disease (COPD) caused 
by smoking, reducing the levels of IL-6, IL-8 and malondialdehyde [134].

Quercetin is a powerful antioxidant but also acts as an enzymatic inhibitor 
in a series of mechanisms involved with inflammation [135]. In LPS-stimulated 
macrophages, quercetin treatment inhibited NF-kB activation and proinflamma-
tory cytokines [136]. A randomised, parallel-group, controlled polycentric study 
showed the efficacy of a dietary supplement based on quercetin (150 mg), perilla 
dry extract (80 mg) and vitamin D3 (5 μg) in preventing allergic rhinitis flare-ups 
in children [137, 138].

The antiallergic property of quercetin has been explored in the laboratory set-
ting by studying the secretory response of activated mast cells in both human and 
animal models [139–143], and by evaluating the release of histamine from human 
basophils [144, 145]. This flavonol inhibits several protein tyrosine and serine/
threonine kinases involved in signal transduction in inflammatory cells [26, 103, 
139, 146–148]. These inhibitory properties on the release of histamine could also 
be interesting for COVID-19, given that the pulmonary mast cells are involved in 
the phenomenon of worsening the pulmonary picture in the event of a “cytokine 
storm” [149].

A meta-analysis of seven randomised trials sought to quantify the effect of 
quercetin on inflammatory mechanisms in vivo by measuring plasma C-reactive 
protein (CRP) concentrations. Meta-analysis showed a significant reduction in 
circulating CRP levels following supplementation with quercetin, especially at 
doses of 500 mg /day or more and in patients with CRP <3 mg/l [150].

3.2 Comorbidities

Since COVID-19 is a multi-organ disease and has more serious clinical conse-
quences in patients with pulmonary, intestinal, hepatic and cardiovascular comorbid-
ities, it is conceivable that its clinical course may profit from the multiple beneficial 
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effects of hesperidin and quercetin in systemic pathologies of this type (point * 5 in 
Figure 6). Epidemiological studies have reported an inverse relationship between 
citrus flavonoid intake and the risk of cardiovascular disease [151, 152]. From a care-
ful review of the literature [153], the use of natural antioxidant polyphenols seems 
to be an excellent approach as they have strong antioxidant and anti-inflammatory 
properties.

A constellation of risk factors for cardiovascular disease is called metabolic 
syndrome (MetS), whose determining factors are, in order of importance: weight, 
genetics, ageing and lifestyle [154]. The criteria for defining MetS are based on the 
presence of 3 out of 5 factors, including obesity, elevated triglycerides, reduced 
HDL-C, elevated blood pressure and elevated fasting glucose [155]. It has been 
shown that individuals with these characteristics are also commonly prone to 
a chronic, low-grade inflammatory states. Oxidative stress phenomena are also 
involved in MetS, probably due to the disturbance of the nutrient metabolism at the 
mitochondrial level [154].

In this context, it is interesting to note that good results have been obtained in 
clinical studies with the integration of orange juice, polyphenols and particularly 
with both hesperidin and quercetin, with antioxidant and antihypertensive effects, 
and by regulating glucose metabolism and lipid profiles. A recent experimental 
study showed that hesperidin (15 or 30 mg/kg) improved biochemical alterations 
and cardiac dysfunction in a high-fat diet-induced MetS model in rats [156].

Soy isoflavones, citrus products, hesperidin and quercetin improved lipid metabo-
lism [157]. Rizza et al. [158] performed a randomised, placebo-controlled study to 
investigate whether oral administration of hesperidin (500 mg once daily for 3 weeks) 
improves endothelial function in individuals with MetS. As a measure of efficacy, 
they measured the difference in flow-mediated dilation of the brachial artery between 
subjects receiving placebo or hesperidin. In the clinical study, hesperidin treat-
ment increased flow-mediated dilation and decreased the circulating inflammatory 
biomarkers (highly sensitive C-reactive protein, serum amyloid A protein, soluble 
E-selectin). The authors concluded that hesperidin recovers endothelial dysfunction 
and reduces circulating markers of inflammation. Such vasculoprotective actions may 
explain the beneficial cardiovascular effects of citrus fruit consumption.

A double-blind study documented the beneficial effects of hesperidin supple-
mentation (500 mg/day) on blood pressure and inflammatory markers in type 2 
diabetes [159]. The mechanisms by which hesperidin could contribute to blood 
pressure control are associated with improvements in endothelial function, 
oxidative stress and inflammation [160]. In a study with a parallel group design, 
49 patients with MetS received either 500 mg of hesperidin or a placebo, twice 
daily for 12 weeks [155]. Hesperidin led to a significant decrease in serum levels 
of glucose, insulin, triglycerides, total cholesterol, low density lipoprotein choles-
terol, TNF-α and high sensitive-CRP. The data on the antihypertensive effect of 
hesperidin is more uncertain but recently Valls et al. published a study on healthy 
volunteers in which they actually showed an antihypertensive effect of orange juice 
enriched with hesperidin [152].

A systematic review has highlighted the potential antidiabetic action of citrus 
flavonoids and their molecular mechanisms based on in vitro and in vivo studies 
[161]. The research identified 38 articles, mostly on experimental animals, which 
reported that citrus flavonoids regulate glycaemic control biomarkers, lipid profiles, 
kidney function, liver enzymes and antioxidant enzymes, and modulated signalling 
pathways related to glucose uptake and insulin sensitivity that are involved in the 
pathogenesis of diabetes and its related complications. Citrus flavonoids, therefore, 
are promising antidiabetic candidates, while their antidiabetic effects have yet to be 
verified in upcoming human studies.
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Quercetin supplementation also may have positive effects among patients with 
MetS and related disorders [162]. A meta-analysis identified 9 studies on this 
topic, which showed overall that quercetin supplementation did not affect fasting 
plasma glucose or insulin resistance. However, in the subgroup analysis, quercetin 
supplementation slightly but significantly reduced fasting glucose in studies lasting 
8 weeks and using quercetin in doses equal to or > 500 mg/day. Better effects were 
found in individuals <45 years of age. Regarding lipid levels, a meta-analysis of 9 
clinical studies [163] found a significant reduction in LDL in overweight and obese 
human subjects who took doses ≥250 mg/day of quercetin for rather extended 
periods, reaching a total dose of ≥14,000 mg; however, HDL cholesterol, triglycer-
ide and total cholesterol levels remained unchanged (p > 0.05).

The supplementation of nutrition with quercetin on blood pressure and endo-
thelial function among patients with MetS was investigated with a meta-analysis 
[164]. The authors found a significant reduction in systolic blood pressure but not 
diastolic pressure.

Finally, the health of the intestine cannot be neglected, which is an organ 
where viral infections tend to be found, and it is also fundamental because the 
release of endotoxins (LPS) due to an increased mucosa permeability or intestinal 
dysmicrobism could enhance systemic inflammatory reactions. It has been argued 
that the interaction between the lung and gut could lead to a vicious cycle of lung 
and intestinal inflammation which may be a potential factor leading to the death 
of patients with COVID-19 [165]. Citrus flavanones may have an impact on the 
intestinal microbiome, exerting beneficial effects on the intestinal barrier function 
and gastrointestinal inflammation [166]. In intervention studies on volunteers, 
orange juice positively modulated the composition and metabolic activity of the 
microbiota, increasing the population of Bifidobacterium spp. and Lactobacillus 
spp. [167] or of Lactobacillus spp., Akkermansia spp. and Ruminococcus spp. 
according to other authors [168], suggesting that orange juice showed a prebiotic 
effect, modulating the intestinal microbiota by improving blood sugar and the lipid 
profile. In a recent review [169], it was highlighted how the beneficial effects of hes-
peridin on cardiovascular risk factors can be partly attributed to the modulation of 
the intestinal microbiota. Based on the current evidence, some of the contradictory 
effects of hesperidin in human studies are in part due to the interindividual vari-
ability of hesperidin in its bioavailability. Quercetin also has a profound influence 
on the intestinal microbiome, which in turn modulates its bioavailability [170].

In conclusion, the results indicate that supplementation with hesperidin or quer-
cetin may have mild antihypertensive effects, improve metabolic lipid abnormali-
ties and inflammatory status in patients with MetS. All these beneficial effects can 
only be reflected in a more favourable clinical course when viral infectious diseases 
cause systemic disorders involving oxidative stress and inflammation.

4. Conclusions

The scientific literature is filled with works that support the beneficial effects 
of citrus flavonoids and quercetin on viral respiratory diseases, including COVID-
19, and there are several possible mechanisms by which this effect is carried out 
(Figure 7).

Inhibition of cellular infection can occur through the intercalation of these 
molecules between viruses and receptors and by inhibition of intracellular replica-
tion. This phenomenon could have a protective role especially in the oral cavity and 
in the gastrointestinal system, where the concentrations of the active ingredients 
are undoubtedly higher than in the blood after intestinal absorption and diffusion 
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in the body. Furthermore, the two flavonoids are able to prevent cell damage due to 
the virus by enhancing the antioxidant defences through the Nrf2 system and by the 
direct scavenger action.

The close relationship between cell damage/death and inflammation means 
that a positive effect can be expected in mitigating the systemic consequences of an 
inflammation that has eluded controls. Finally, hesperidin and quercetin can exert 
an indirect beneficial effect, favouring carbohydrate and lipid metabolism, improv-
ing general health conditions and thus preventing comorbidities that are contribu-
tory causes of the most serious complications. All the experimental models cited 
here would make it plausible for an increase in the consumption of flavonoid-rich 
foods, or flavonoid supplementation during periods of increased commitment of 
the body defences, to help the immune system in the fight against virus infections. It 
is therefore desirable that further suitable clinical studies are conducted to investi-
gate the potential of these natural substances and to define effective dosages.
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